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A crystal plasticity materials constitutive model

for polysynthetically-twinned γ-TiAl + α2-Ti3Al

single crystals

M. GRUJICIC, S. BATCHU
Department of Mechanical Engineering, Program in Materials Science and
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Deformation behavior of polysynthetically-twinned lamellar γ -TiAl + α2-Ti3Al single crystals
has been analyzed using a three-dimensional, isothermal, rate-dependent, large-strain,
crystal-plasticity based materials constitutive model. Within the model it is assumed that
plastic deformation parallel to the γ -TiAl/α2-Ti3Al lamellar boundaries is controlled by the
softer γ -TiAl phase while deformation which contains a component normal to these
boundaries is dominated by the harder α2-Ti3Al phase. The parameters appearing in the
crystal-plasticity materials constitutive relations are assessed using the available
experimental information pertaining to the active slip systems, their deformation
resistances and hardening and rate behavior of the two constitutive phases both in their
single-crystalline and in polysynthetically-twinned lamellar forms. The constitutive
relations are implemented in a Vectorized User Material Subroutine (VUMAT) of the
commercial finite element program Abaqus/Explicit within which the material state is
integrated during loading using an explicit Euler-forward formulation. The results obtained
suggest that the adopted crystal-plasticity model and the parameters assessed in the
present work account quite well for the observed room-temperature deformation behavior
of polysynthetically-twinned lamellar γ -TiAl + α2-Ti3Al single crystals.
C© 2001 Kluwer Academic Publishers

1. Introduction
Two-phase γ -TiAl + α2-Ti3Al alloys with micron-
scale lamellar microstructures generally exhibit
improved ductility and fracture toughness in com-
parison to their monolithic constituents. In addi-
tion, these alloys possess a superior combination of
high-temperature properties such as creep resistance,
microstructural stability, oxidation resistance, etc. Con-
sequently, there has been much interest in developing
these alloys as viable materials for high-temperature
structural applications. There are several comprehen-
sive reviews [e.g. 1–3], that summarize major advances
in development of these alloys. It should be pointed out,
however, that the main improvements in alloy prop-
erties have been realized largely in polysynthetically
twinned single-crystalline form of these materials and
that it has been quite difficult to obtain similar suc-
cesses in the polycrystalline materials of this type. The
latter typically fail at tensile strains less than 3% and
have a low level of fracture toughness with the criti-
cal stress intensity factor KIC being generally less than
30 MPa

√
m. In addition, many properties (e.g. tensile

fracture strain, fracture toughness, etc.) of γ -TiAl + α2-
Ti3Al single crystals are highly anisotropic. While
the single crystalline materials possess quite attractive
properties, their use is cost prohibitive. Thus, achiev-

ing a superior combination of properties in conven-
tionally processed polycrystalline γ -TiAl + α2-Ti3Al
alloys remains an important, though formidable, en-
gineering challenge. Nevertheless, better understand-
ing of the physical basis for improved performance
of polysynthetically-twinned γ -TiAl + α2-Ti3Al single
crystals, and their high level of anisotropy, which is
the subject of the present work, should certainly assist
the development of high-performance polycrystalline
alloys of this type.

During solidification, Ti-(48–50 at.%) Al alloys,
which are considered in the present work, form a disor-
dered hexagonal-close-packed (h.c.p.) α-phase which
upon cooling orders into a h.c.p.-based α2-phase with
the DO19 crystal structure and then transforms to
(or near) completion into an ordered face-centered-
tetragonal (f.c.t.) γ -phase with the L10 crystal structure.
The final microstructure consists of parallel γ -TiAl and
α2-Ti3Al lamellae with a standard f.c.c.-h.c.p. type ori-
entation relationship: {111}γ ‖ (0001)α2 and 〈1–10]γ ‖
〈11–20〉α2. In addition, the α2/γ and γ /γ lamellar
interfaces acquire a {111}γ ‖ (0001)α2 and a {111}γ ‖
{111}γ orientation, respectively [4]. This implies that
the unique orientation of the basal (0001) plane in each
grain of the parent h.c.p. α-phase dictates the orienta-
tion of the resulting γ -TiAl and α2-Ti3Al lamellae.
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The mechanical response of single-crystalline
γ -TiAl + α2-Ti3Al materials is highly anisotropic at the
macroscopic, microscopic and crystal structure length
scales. At the macroscopic length scale, properties such
as flow stress, fracture stress, fracture strain, critical
stress intensity factor, crack growth rate, and others
exhibit a strong orientation dependence [e.g. 5]. In
the γ -TiAl + α2-Ti3Al laminar microstructure, γ -TiAl
is the softer phase and its flow properties are highly
anisotropic due to the lamellar geometry. Shear defor-
mation parallel to the lamellar interfaces is considerably
easier (the soft mode) than that normal to the inter-
faces (the hard mode). In the latter case, slip in γ -TiAl
encounters the harder α2-Ti3Al phase [6]. Since the
soft-to-hard mode slip length ratio is typically on the
order of 100, the Hall-Petch effect is significant [7].
In addition, the Hall-Petch slope is also anisotropic,
with typical values 0.273 and 0.440 MPa/

√
m for the

soft and the hard modes, respectively [7]. Thus, the
microscopic length-scale anisotropy largely pertains to
large differences in the soft- and hard-mode deforma-
tion resistances within each phase and to the differ-
ences in deformation resistances of the two phases.
At the crystal structure length-scale, anisotropy arises
from the differences in deformation resistance of dif-
ferent slip systems within the same phase. For example,
〈a〉-slip systems associated with 〈112̄0〉 slip directions
are generally substantially softer than any of the pos-
sible (c + a)-slip systems in α2-Ti3Al. Since the lat-
ter systems are needed to achieve a general state of
strain, during plastic deformation the α2-Ti3Al phase
can be considered as kinematically constrained in the
c-direction. The behavior of the materials is further
complicated by the fact that the contribution of a partic-
ular slip system to the overall deformation is affected
by temperature, strain rate, alloy chemistry and more
importantly, the impurity content.

Micromechanics-based finite element analyses
which use physically-based materials constitutive rela-
tions for the constituent phases, enable incorporation of
the orientation relationships between the phases, orien-
tation of the phase boundaries, and various kinematic
constraints (e.g. α2/γ interfaces must remain of the
(0001)α2 ‖ {111}γ character) offer a unique opportunity
to better understand the deformation and fracture be-
havior of polysynthetically–twinned single-crystalline
γ -TiAl + α2-Ti3Al alloys. Such analyses were con-
ducted in a series of papers by Asaro and cowork-
ers [e.g. 8–10]. However, Asaro and coworkers ana-
lyzed primarily the effect of grain misorientation on
the local incompatibility of plastic flow and on the re-
sulting stress concentration which can lead to mate-
rial fracture in polycrystalline γ -TiAl + α2-Ti3Al al-
loys. In addition, a two-dimensional idealization of
the crystallographic-slip behavior in a homogenized
γ -TiAl + α2-Ti3Al material was used by these investi-
gators which prevents a more direct comparison of the
computed results and their experimental counterparts.
To overcome these limitations, a full three-dimensional
analysis of the slip behavior in γ -TiAl and α2-Ti3Al
single crystals is carried out within the framework of
crystal plasticity. The results obtained are used to con-

struct a homogenized crystal-plasticity based materi-
als constitutive model for polysynthetically-twinned
γ -TiAl + α2-Ti3Al single crystals. The kinematic cou-
pling between the two phases is incorporated by re-
quiring that slip parallel to the lamellar interfaces is
dominated by the softer γ -TiAl phase, while slip nor-
mal to these interfaces is taken to be controlled by the
harder α2-Ti3Al phase.

The organization of the paper is as follows:
The basic deformation behaviors of γ -TiAl and
α2-Ti3Al single crystals by crystallographic slip are
described in Section 2.1. The deformation behavior
of polysynthetically-twinned γ -TiAl + α2-Ti3Al single
crystals by slip is discussed in Section 2.2. A brief
overview of the crystal-plasticity materials constitu-
tive relations for γ -TiAl and α2-Ti3Al single crystals
as well as for polysynthetically-twinned γ -TiAl + α2-
Ti3Al single crystals and their implementation into
the commercial finite element package Abaqus/Explicit
[11] are outlined in Section 2.3 and in Appendix A,
respectively. The procedure for the assessment of the
crystal-plasticity parameters and the main computa-
tional results and their comparison with the experi-
mental counterparts are discussed in Section 3 and in
Appendix B. The main conclusions resulting from the
present work are presented in Section 4.

2. Computational procedure
2.1. Deformation behavior of γ -TiAl and

α2-Ti3Al single crystals
The γ -TiAl phase has an ordered f.c.t.-based L10
crystal structure, Fig. 1a, with cγ /aγ = 1.02 and
aγ = 0.4 nm where aγ and cγ are the lattice param-
eters. In the single-crystalline form of γ -TiAl, the in-
elastic deformation of this phase is mainly the result of
b = 1/2〈11̄0] ordinary-dislocation slip (b—the magni-
tude of the Burgers vector) with an additional contribu-
tion from b = 〈1̄01] super-dislocation and a limited con-
tribution from b = 1/2〈1̄1̄2] ordinary-dislocation slip,
all on the {111} family of planes, Fig. 2, [6]. A mixed
〈· · ·〉/[· · ·]. notation as in 〈11̄0] is used to make dis-
tinction between the first two Miller indices and the
third one. This is needed when identifying crystallo-
graphically equivalent directions in a tetragonal crystal
structure such as that of γ -TiAl. It should be noted that
twinning, though not considered in the present analy-
sis, can play a role especially at lower temperatures and
higher deformation rates.

The native basis of the f.c.t. crystal structure is or-
thogonal and is defined by base vectors {aγ , bγ , cγ },
Fig. 2. To obtain an orthonormal basis which is needed
for computations, the following normalization must be
done: eγ

1 = aγ /aγ , eγ

2 = bγ /aγ , eγ

3 = cγ /cγ where {eγ

1 ,
eγ

2 , eγ

3 } are the unit base vectors of the orthonormal
coordinate system.

The α2-Ti3Al phase possesses an ordered h.c.p.-
based DO19 crystal structure, Fig. 1b, with cα2/aα2 =
0.8 and aα2 = 0.577 nm, where aα2 and cα2 are the lat-
tice parameters. The plastic deformation in this phase
takes place largely on the prismatic {10 1̄ 0} 〈1 2̄ 10〉
and the basal (0001) 〈11 2̄ 0〉 〈a〉-slip systems and on
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Figure 1 The crystal structures of the (a) L10 γ -TiAl and (b) DO19

α2-Ti3Al: Al atoms—open circles, Ti atoms—filled circles.

Figure 2 The relationship between the orthogonal {aγ , bγ , cγ } and the
orthonormal {eγ

1 , eγ

2 , eγ

3 } coordinate systems and the active slip systems
in γ -TiAl.

the pyramidal {11 2̄ 1} 〈11 2̄ 6〉 〈c + a〉-slip system,
Fig. 3a–c [9, 10]. The α2-Ti3Al phase in equilibrium
with the γ -TiAl phase in polysynthetically-twinned
γ -TiAl + α2-Ti3Al single crystals typically contains

36.5 at. % Al. For the α2-phase of this composition, the
ambient-temperature critical resolved shear stresses
for the prismatic {10 1̄ 0} 〈1 2̄ 10〉, the basal (0001)
〈11 2̄ 0〉 and the pyramidal {11 2̄ 1} 〈11 2̄ 6〉 slip
systems, are found to be 100, 330, and 910 MPa,
respectively [10]. As mentioned earlier, due to the
unusually high value of the critical resolved shear
stress for the {11 2̄ 1} 〈11 2̄ 6〉 (c + a)-slip system, the
plastic deformation is essentially constrained in the
c-direction of the α2-Ti3Al phase.

The native lattice basis of the h.c.p. crystal structure
is non-orthogonal. This basis is denoted in Fig. 3d by a
set of non-orthogonal base vectors, {a1, a2, a3, c} with
a1 + a2 + a3 = 0. For computational purposes, an or-
thonormal basis is generally needed. Toward that end
an orthohexagonal cell is first defined. Fig. 3d shows the
relationship between a simple hexagonal cell defined by
the base vectors {a1, a2, a3, c} and the corresponding
orthohexagonal cell defined by the base vectors {aα2,
bα2, cα2}. The two cells share the base vector c while the
other base vectors are related as: aα2 = a2, and bα2 =
a3 − a1. The needed orthonormal cell is then defined
by the unit base vectors {eα2

1 , eα2
2 , eα2

3 } which are ob-
tained by the following normalization: eα2

1 = aα2/|aα2|,
eα2

2 = bα2/|bα2|, and eα2
3 = c/cα2.

2.2. Deformation behavior of
polysynthetically-twinned
γ -TiAl + α2-Ti3Al single crystal

A schematic of the typical microstructure of
polysynthetically-twinned γ -TiAl + α2-Ti3Al single
crystals is shown in Fig. 4. The microstructure consists
of a single set of parallel γ -TiAl and α2-Ti3Al lamel-
lae. Typically, the number of γ -TiAl lamellae is an or-
der of magnitude larger than the number of α2-Ti3Al
lamellae. As pointed out earlier, the lamellae of the two
phases have a (111)γ ‖ (0001)α2 and 〈1–10]γ ‖ 〈11–
20〉α2 orientation relationship and the lamellae inter-
faces are parallel with the (111)γ ‖ (0001)α2 planes. It
should be noted that close-packed 〈11–20〉α2 directions
are all equivalent, while, due to tetragonality of the L10
crystal structure of the γ -TiAl phase, [1̄10]γ and 〈1̄01]γ
directions are not equivalent. Thus, in the γ /α2 lamellar
structure, γ -TiAl can exist in six crystallographically-
equivalent variants, each corresponding to one of the six
possible orientations of the [11̄0]γ direction relative to
the 〈112̄0〉α2 directions. As indicated schematically in
Fig. 4, each γ -TiAl lamella is composed of a number of
domains, with adjacent domains being different crys-
tallographic variants of this phase. Since the probability
for formation of each of these variants is expected to
be the same, the properties of a γ -TiAl lamella in any
close-packed direction in the (111)γ plane (the plane
parallel to the lamellae interfaces) can be considered
as identical. Using this approximation, one can distin-
guish between three types of slip systems in the lamellar
γ -TiAl phase, Table I. Two of these (S1, S2) are denoted
as soft-mode slip systems and are associated with slip
parallel to the lamellae interfaces, while the third one
(H1) is labeled as a hard-mode slip system and is associ-
ated with slip which has a component orthogonal to the
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Figure 3 (a) Prismatic {101̄0}〈12̄10〉, (b) basal (0001)〈112̄0〉 and (c) pyramidal {112̄1}〈112̄6〉 slip systems in α2-Ti3Al: (d) The relationship between
the simple hexagonal cell (light solid lines), the corresponding orthohexagonal cell (dark solid lines) and the hexagonal (prism) cell (dashed lines) in
α2-Ti3Al.

lamellae interfaces. Propagation of slip in the direction
normal to lamellae interfaces is deemed hard since, as
discussed earlier, the α2-Ti3Al phase is kinematically
constrained in that direction. An inspection of Table I
establishes that in case of the S1 slip systems, the slip
plane is parallel while in the case of the S2 slip systems,
the slip plane is not parallel to the lamellar interface.
In both cases, however, the slip direction resides in a
plane parallel to the lamellar interface.

As far as plastic deformation of the α2-Ti3Al lamellae
in polysynthetically-twinned γ -TiAl + α2-Ti3Al single
crystals is concerned, it can be considered as essentially
identical to that described in the previous section and
is thus controlled by the three prismatic {101̄0} 〈12̄10〉

and the three basal (0001) 〈112̄0〉-〈a〉- and by the six
pyramidal {112̄1}〈112̄6〉–〈c + a〉-slip systems.

2.3. Single-crystal crystal-plasticity
materials constitutive model

The deformation behavior of γ -TiAl and α2-Ti3Al sin-
gle crystals as well as of polysynthetically-twinned
γ -TiAl + α2-Ti3Al single crystals are modeled using a
rate-dependent, isothermal, elastic-viscoplastic, finite-
strain, crystal-plasticity formulation. The continuum
mechanics foundation for this model can be traced to
the work of Teodosiu [12], Hill and Rice [13], Mandel
[14], Teodosiu and Sidoroff [15], Asaro and Rice [16]
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T ABL E I Slip systems operating in γ -TiAl lamellae of
polysynthetically-twinned γ -TiAl + α2-Ti3Al single crystals

Slip System Symbol Slip Type

[11̄0](111) S1 Soft Mode
[1̄01](111)
[011̄](111)

[1̄01](11̄1) S2 Soft Mode
[11̄0](111̄)
[01̄1](1̄11)

[110](11̄1) H1 Hard Mode
[011](11̄1)
[101](111̄)
[011](111̄)
[110](1̄11)
[101](1̄11)

Figure 4 A schematic of the microstructure of polysynthetically-
twinned γ -TiAl + α2-Ti3Al single crystals.

and Asaro [17]. The work of Kocks et al. [18], Frost
and Ashby [19], and Argon [20], on the other hand, pro-
vides a more materials science viewpoint of the subject
matter.

For each phase, the (initial) reference configuration
consists of a perfect, stress-free crystal lattice and the
embedded material, Fig. 5a. The position of each mate-
rial point in the reference configuration is given by its
position vector X. In the current configuration, Fig. 5c,
each material point is described by its position vector, x,
and hence, mapping of the reference configuration into
the current configuration is described by the deforma-
tion gradient, F = dx/dX. As indicated in Fig. 5a–c, in
order to reach the current configuration, the reference
configuration must be deformed both elastically and
plastically and, hence, the total deformation gradient
can be multiplicatively decomposed into its elastic, Fe,
and plastic, FP, parts as F = Fe Fp. In other words, the
deformation of a single-crystal material point is consid-
ered to be the result of two independent atomic-scale
processes: (i) an elastic distortion of the crystal lat-
tice corresponding to the stretching of atomic bonds

Figure 5 Multiplicative decomposition of the deformation gradient F
into a plastic part Fp and an elastic part Fe. The unit slip plane normal
nα and the unit shear direction mα are also indicated.

and; (ii) a plastic deformation which is associated with
atomic plane slippage which leaves the crystal lattice
undisturbed. While twinning is a potential inelastic de-
formation mechanism at lower temperatures and higher
strain rates, only slip on well defined crystallographic
planes in low-index crystallographic directions is con-
sidered in the present work.

The present constitutive model is based on the fol-
lowing governing variables: (i) The Cauchy stress, T ;
(ii) The deformation gradient, F ; (iii) Crystal slip sys-
tems, labeled by integers α. Each slip system is spec-
ified by a unit slip-plane normal nα

0 , and a unit vector
mα

0 aligned in the slip direction, both defined in the
reference configuration; (iv) The plastic deformation
gradient, Fp, with det Fp = 1 (plastic deformation by
slip does not give rise to a volume change) and; (v) The
slip system deformation resistance sα > 0 which has the
units of stress.

Based on the aforementioned multiplicative decom-
position of the deformation gradient, Fig. 5, the elastic
deformation gradient Fe which describes the elastic
distortions and rigid-body rotations of the crystal lat-
tice, can be defined by:

Fe ≡ FF p−1, det Fe > 0. (1)

The plastic deformation gradient, Fp, on the other hand,
accounts for the cumulative effect of shearing on all slip
systems in the crystal.

Since elastic stretches in intermetallic materials are
generally small, the constitutive equation for stress un-
der isothermal conditions can be defined by the linear
relation:

T ∗ = C[Ee] (2)

where C is a fourth-order anisotropic elasticity ten-
sor, and Ee and T ∗ are respectively the Green elas-
tic strain measure and the second Piola–Kirchoff stress
measure relative to the isoclinic configuration obtained
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after plastic shearing of the lattice as described by Fp

in Fig. 5b. Ee and T ∗ are respectively defined as:

Ee ≡ (1/2){FeT Fe − I } T ∗ ≡ (det Fe)Fe−1T Fe−T

(3)
where I is the second order identity tensor.

The elasticity tensor C (expressed as a 6 × 6 square
matrix), for the tetragonal γ -TiAl phase contains six
independent non-zero components: C11 = C22, C33,
C12, C13 = C23, C44 = C55, and C66. The hexagonal
α2-Ti3Al phase exhibits transverse elastic isotropy and,
hence, its elasticity tensor contains six different (five in-
dependent) non-zero components: C11 = C22, C33, C12,
C23 = C13, C44 = C55, C66 = 0.5(C11 − C12). For both
phases, the aforementioned elastic constants are defined
relative to the respective orthonormal coordinate sys-
tems, Figs 2 and 3d.

The evolution equation for the plastic deformation
gradient is defined by the flow rule:

Ḟp Fp−1 =
∑

β

γ̇ α Sα
0 , Sα

0 ≡ mα
0 ⊗ nα

0 , (4)

where Sα
0 is the Schmid tensor and ⊗ denotes the ten-

sorial product of the two vectors.
The components of a unit slip plane normal nα

0 and a
unit slip direction mα

0 in the respective reference con-
figurations with respect to the orthonormal bases in the
two phases are defined using the following procedure:

For a {h k l} 〈u v w〉 slip system in γ -TiAl:

{
nα

0,1, nα
0,2, nα

0,3

} = {h/aγ , k/aγ , l/cγ }/}
× {h/aγ , k/aγ , l/cγ }|;〈

mα
0,1, mα

0,2, mα
0,3

〉 = 〈uaγ , vaγ , wcγ 〉/|
× 〈uaγ , vaγ , wcγ 〉|.

For a {h k m l} 〈u v z w〉 slip system in α2-Ti3Al:

{
nα

01, nα
02, nα

0.3

} = {k,-(k + 2h)/
√

3, l/(cα2/aα2)}/|
× {k, −(k + 2h)/

√
3, l/(cα2/aα2)}|;〈

mα
0,1, mα

0,2, mα
0,3

〉 = 〈3v/2, −√
3(u + v/2),

× w(cα2/aα2)〉|〈3v/2, −√
3(u + v/2),

× w(cα2/aα2)〉|,

where | | is used to denote the magnitude of a vector or
a plane normal.

The plastic shearing rate γ̇ α on a slip system α is de-
scribed using the following simple power-law relation:

γ̇ α = ˙̃γ
|τα|1/m

|sα| sign (τα) (5)

where ˙̃γ is a reference plastic shearing rate, τα and
sα are the resolved shear stress and the deformation
resistance on slip system α, respectively and m is the
material rate-sensitivity parameter.

Since elastic stretches in intermetallic materials is
generally small, the resolved shear stress on slip system

α can be defined as:

τα = T ∗ · Sα
0 (6)

where the raised dot denotes the scalar product between
two second order tensors.

Finally, the slip system resistance is taken to evolve
as:

ṡα =
∑

β

hαβ |γ̇ β |, (7)

where hαβ describes the rate of strain hardening on
the slip system α due to the shearing on the coplanar
(self-hardening) and non-coplanar (latent-hardening)
slip systems β. A complete characterization of the hard-
ening matrix hαβ for the two phases is a formidable task.
For example, in the α2-Ti3Al phase deforming by three
equivalent prismatic {10 1̄ 0} 〈11 1̄ 0〉 〈a〉-slip systems,
three equivalent basal (0001) 〈112̄0〉 〈a〉-slip systems
and six equivalent pyramidal {10 2̄ 1} 〈11 2̄ 6̄〉 〈c + a〉-
slip systems, the hαβ matrix contains 12 × 12 = 144 el-
ements. In order to obtain a tractable description of the
crystal hardening, the following simple form for the slip
system hardening matrix hαβ is adopted:

hαβ = qαβhβ (8)

Here, hβ denotes the self-hardening rate while qαβ is a
matrix describing the latent hardening behavior. Since
very little information is available in the literature re-
garding the latent hardening behavior of the two phases,
a simple description for the matrix qαβ is adopted:

qαβ = 1

q1

{
if α and β are coplanar slip systems,

otherwise
(9)

Each phase has one set of coplanar slip systems and
they are defined as following:

γ -TiAl Phase: One {111} 〈11̄0], two {111} 〈01̄1]
and one {111} [11 2̄] slip systems;

α2-Ti3Al Phase: Three basal 〈a〉-slip systems:
(0001)[11 2̄ 0], (0001)[2̄ 110], (0001)[1 2̄ 10].

In general, the parameter ql can have different values
depending on what types of slip systems interact. Due
to lack of the relevant data, however, the approach of
Kad et al. [8], is followed and a fixed value of ql = 1.4
is used. Furthermore, following Kothari [21], the self-
hardening rate hβ is defined as:

hβ = hβ

0

∣∣∣∣∣1 − sβ

sβ
s

∣∣∣∣∣
τ

sign

(
1 − sβ

sβ
s

)
. (10)

where hβ

0 is the initial hardening rate and sβ
s the satura-

tion slip deformation resistance which may, in general,
be different for different families of slip systems within
the same phase. This variation, as well as the depen-
dence of the saturation resistance sβ

s on strain rate and
temperature, is not considered in the present work due
to lack of the relevant data.
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The integration of the material state represented by
Equations 9, 10 and 12 along the loading path and
its implementation in Abaqus/Explicit is discussed in
Appendix A.

3. Results and discussion
3.1. Constitutive relations for γ -TiAl and

α2-Ti3Al single crystals
In this section, the available experimental data for
room-temperature deformation of γ -TiAl and α2-Ti3Al
single crystals are used to determine their respective
crystal-plasticity type materials constitutive relations.

The most comprehensive single study of the room-
temperature deformation behavior of single-crystalline
γ -TiAl known to the authors is the one carried out by
Kawabata et al. [22]. Kawabata et al. [22] carried out
uniaxial compression tests on five different orientations
of γ -TiAl single crystals, Table II. Orientation of the
compression axis is indicated in the first column of
Table II. The slip systems with the maximum initial
value of the Schmid factor are identified in the second
column, while the respective magnitudes of the initial
Schmid factors are given in the third column of the same
table.

In accordance with the transmission electron mi-
croscopy observations of Kawabata et al. [22], only

T ABL E I I Crystallographic parameters for five γ -TiAl single-crystal
orientations used in the work of Kawabata et al. [22]

Slip Systems with
Orientation of Maximum Initial Magnitude of
Compression Axis Schmid Factor Schmid Factor

[001] Eight 〈101̄] {111} ∼0.409
[1̄10] Four 〈101̄] {111} ∼0.409

[010] Four 〈11̄0] {111} ∼0.409
Four 〈101̄] {111}

∼[2̄96] Single [11̄0] (111) −0.482
∼[2̄45] Single [101̄] (111) −0.445

Figure 6 A comparison between the experimental uniaxial-compression
stress-strain curves [22] (dashed lines) and the corresponding fitting
curves (solid lines) based on the crystal-plasticity model used in the
present work for two γ -TiAl single crystals.

Figure 7 A comparison between the experimental uniaxial-compression
stress–strain curves [22] (dashed lines) and the ones predicted by the cur-
rent crystal-plasticity model (solid lines) for three γ -TiAl single crystals.

two types of slip systems are considered to be op-
erational: the 〈11̄0] {111} and 〈101̄] {111} slip sys-
tems. The contribution of the 〈1̄1̄2] {111} slip systems
is deemed insignificant. The crystal-plasticity para-
meters (e.g. ˙̃γ and m, Equation 10, hβ

0 , sβ
s and r ,

Equation 15, etc.) are determined by fitting the room-
temperature uniaxial-compression stress-strain curves
obtained by Kawabata et al. [22] using the Simplex
method. A brief overview of the Simplex method is
given in Appendix B. All the crystal-plasticity parame-
ters were determined by fitting the stress-strain curves
corresponding to the [001] and [010] orientations of
the uniaxial compression axis, Table II. A compari-
son between the two experimental and the two “fitted”
uniaxial-compression stress-strain curves is shown in
Fig. 6. Next, the same parameters are used to com-
pute the stress-strain curves for the remaining three
([1̄10], [2̄96] and [2̄45]) orientations of the uniaxial-
compression axis. A comparison of these three stress-
strain curves and their experimental counterparts is
shown in Fig. 7.

The agreement between the computed and experi-
mental results shown in Figs 6 and 7 is quite good.
It should be noted that for the last two orientations of
the uniaxial-compression axis, Table II, plastic defor-
mation is initially controlled by a single slip system.
Hence, in these two cases, the effect of latent hardening
(characterized by the magnitude of q1), is insignificant.
A good agreement between the experimental and the
computed stress-strain curves in this case, Fig. 7, and
an equally good agreement between the experimental
and the computed stress-strain curves for the remain-
ing three orientations of the uniaxial-compression axis,
Figs 6 and 7, justifies the use of q1 = 1.4.

The values of the crystal-plasticity-based materials
constitutive parameters for single-crystalline γ -TiAl
obtained in the present work as well as the remaining
model parameters available in the literature are listed
in Table III.

To determine the crystal-plasticity parameters
for α2-Ti3Al single crystals, the simplex-based
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T ABL E I I I Crystal-plasticity parameters for the γ -TiAl single crystals

Parameter Symbol Value Units Reference

Elastic Constant C11 190 GPa (23)
Elastic Constant C33 185 GPa (23)
Elastic Constant C12 105 GPa (23)
Elastic Constant C13 90 GPa (23)
Elastic Constant C44 120 GPa (23)
Elastic Constant C66 50 GPa (23)
Reference Shearing Rate ˙̃γ 0 0.005 s−1 This Work
Strain Rate Sensitivity m 0.014 N/A This Work
Latent Hardening Parameter ql 1.4 N/A This Work

Self-Hardening {111} 1/2 〈11̄0] r 3.1 N/A This Work
Exponent {111} 〈1̄01] 3.0
Initial Slip {111} 1/2 〈11̄0] s0 14.3 MPa This Work
Resistance {111} 〈1̄01] 22.7
Self-Hardening {111} 1/2 〈11̄0] ho 940.2 MPa This Work
Parameter {111} 〈1̄01] 950.7
Saturation-Slip {111} 1/2 〈11̄0] ss 212.2 MPa This Work
Resistance {111} 〈1̄01] 291.1

T ABL E IV Crystallographic parameters for five α2-Ti3Al single-crystal orientations used in the work of Inui et al. [24]. Euler Angles: ω = φ = 0
for All Orientations

Single-Crystal Orientation Magnitude of Schmid Factor

Orientation of Euler (0001) 〈112̄0〉 {11̄00} 〈112̄0〉 {112̄1} 〈1̄1̄26〉
Compression Axis Angle, θ Basal Slip Prismatic Slip Pyramidal Slip

[0001] 0 0 0 0.4494
[112̄4] 22 0.3449 0.0619 0.4459
[112̄2] 39 0.4889 0.1732 0.3321
[112̄1] 59 0.4454 0.3149 0.3995
[112̄0] 90 0 0.4330 0.4494

fitting procedure discussed above is applied to the
room-temperature uniaxial-compression data of Inui
et al. [24]. The crystallographic parameters for the five
α2-Ti3Al single crystal orientations investigated by Inui
et al. [24] are listed in Table V. Each orientation is
defined in terms of its Euler angles (ω, θ , and φ),
where the angles are listed in the order of the rotations
they quantify. For all five α2-Ti3Al single-crystal ori-
entations studied by Inui et al. [24], ω = φ = 0◦, while
0 ≤ θ ≤ 90◦. As indicated in Table IV, when the basal
plane is normal to the compression axis, (θ = 0◦), the
Schmid factor for the basal (0001)〈112̄0〉 and the pris-
matic {11̄00} 〈112̄0〉 〈a〉-slip systems is zero and, hence,
only the pyramidal {112̄1} 〈1̄1̄26〉 〈c + a〉–slip systems
are operative. Hence the uniaxial-compression stress-
strain curve for the θ = 0◦ orientation of the α2-Ti3Al
single crystal is used to determine the crystal-plasticity
parameters for the pyramidal {112̄1} 〈1̄1̄26〉 〈c + a〉-
slip. In the case of the θ = 90◦ orientation of the com-
pression axis, the Schmid factor for the (0001) 〈112̄0〉
basal slip is still zero. Hence the stress-strain curve for
this orientation crystal is used to determine the crystal-
plasticity parameters for the {11̄00} 〈112̄0〉 prismatic
slip system. Lastly, the stress-strain curve correspond-
ing to the θ = 39◦ orientation of the α2-Ti3Al single
crystal is used to determine the crystal-plasticity param-
eters for the (0001) 〈112̄0〉 slip systems. The results of
the aforementioned fitting procedure are summarized
in Fig. 8. The crystal-plasticity parameters for the α2-
Ti3Al single crystal obtained as well as the remaining

Figure 8 A comparison between the experimental uniaxial-compression
stress–strain curves [24] (dashed lines) and the corresponding fitting
curves (solid lines) based on the current crystal-plasticity model (solid
lines) for three α2-Ti3Al single crystals.

parameters available in the literature are summarized
in Table V.

The crystal-plasticity parameters obtained are used
to predict the uniaxial-compression stress-strain curves
for the remaining two orientations of α2-Ti3Al sin-
gle crystal (θ = 22◦ and θ = 59◦) investigated by Inui
et al. [24]. A comparison of the predicted and the
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T ABL E V Crystal-plasticity parameters for the α2-Ti3Al single crystals

Parameter Symbol Value Units Reference

Elastic Constant C11 221 GPa (25)
Elastic Constant C33 238 GPa (25)
Elastic Constant C12 71 GPa (25)
Elastic Constant C13 85 GPa (25)
Elastic Constant C44 69 GPa (25)
Reference Shearing Rate ˙̃γ 0 0.001 s−1 This Work
Strain Rate Sensitivity m 0.009 N/A This Work
Latent Hardening Parameter ql 1.4 N/A This Work

Self-Hardening {11̄00} 〈112̄0〉 r 2.7 N/A This Work
Exponent (0001) 〈112̄0〉 3.0

{112̄1} 〈112̄6〉 2.9
Initial Slip {11̄00} 〈112̄0〉 s0 19.2 MPa This Work
Resistance (0001) 〈112̄0〉 44.8

{112̄1} 〈112̄6〉 121.9
Self-Hardening {11̄00} 〈112̄0〉 ho 861.7 MPa This Work
Parameter (0001) 〈112̄0〉 742.8

{112̄1} 〈112̄6〉 814,7
Saturation Slip {11̄00} 〈112̄0〉 ss 149.3 MPa This Work
Resistance (0001) 〈112̄0〉 417.7

{112̄1} 〈112̄6〉 1586.3

Figure 9 A comparison between the experimental uniaxial-compression
stress–strain curves [24] (dashed lines) and the corresponding curves
predicted by the current crystal-plasticity model (solid lines), for two
α2-Ti3Al single crystals.

experimental stress-strain curves shown in Fig. 9 sug-
gests that the crystal-plasticity parameters determined
in the present work quite realistically account for the de-
formation behavior of α2-Ti3Al single crystals at room
temperature.

3.2. Polysynthetically-twinned
γ -TiAl + α2-Ti3Al single crystals

Macroscopic deformation behavior of a multi-
phase material with complex microstructure such
as polysynthetically-twinned γ -TiAl + α2-Ti3Al sin-
gle crystals can be modeled using the finite element
method. This entails (a) a finite-element discretiza-
tion of the materials microstructure; (b) the knowledge
of materials constitutive relations of the constituent

phases; (c) information pertaining to the orientation re-
lationship between the phases; and (d) a quantitative
understanding of kinematic constraints, e.g., the crys-
tallographic nature of the habit plane separating adja-
cent particles of the phases. The typical microstruc-
ture of γ -TiAl + α2-Ti3Al single crystals, Fig. 4, can
be readily discretized into finite elements. The γ -TiAl/
α2-Ti3Al orientation relationship, materials constitu-
tive relations for the two phases and the habit plane con-
ditions are all discussed in the previous sections. Thus,
a finite element analysis of the deformation behavior
of polysynthetically-twinned γ -TiAl + α2-Ti3Al sin-
gle crystals can be carried out. However, this was
not done here because the ultimate objective of the
present work is to develop materials constitutive rela-
tions for polysynthetically-twinned γ -TiAl + α2-Ti3Al
single crystals suitable for implementation into a fi-
nite element analysis of macroscopic deformation be-
havior of polycrystalline forms of these materials. In
such analyses, one cannot typically afford to discretize
a multigrain (multi colony) material into finite elements
and assign to each element the properties of a single
phase (γ -TiAl or α2-Ti3Al). Rather, one needs homoge-
nized, effective properties of polysynthetically-twinned
γ -TiAl + α2-Ti3Al single crystals. In this section, an at-
tempt is made to derive such effective constitutive rela-
tions of polysynthetically-twinned γ -TiAl + α2-Ti3Al
single crystals and test these relations against their
experimental counterparts.

As discussed in Section 2.2, plastic deformation
in polysynthetically-twinned γ -TiAl + α2-Ti3Al single
crystals parallel to the interlamellar γ -TiAl/α2-Ti3Al
interfaces is substantially easier (the soft mode) than
deformation which has a component normal to these
interfaces (the hard mode). Therefore, the two modes
of deformation will be considered separately.

In γ -TiAl lamellae, plastic deformation on planes
parallel to the (111)γ ‖ (0001)α2 boundaries is con-
trolled both by the 〈11̄0] (111) and the 〈101̄] (111)
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(S1)-slip systems, Table I. As shown in Section 3.1,
slip resistance and strain hardening characteristics
differ in these two slip systems. Also as shown
in Fig. 4, each γ -TiAl lamella consists of multiple
crystallographically-equivalent domains. The γ -TiAl
domains differ from each other relative to along which
of the six 〈112̄0〉 directions of the α2-Ti3Al phase is
〈101̄] direction of the γ -TiAl aligned in the (111)γ
‖ (0001)α2 interlamellar boundary. Since the proba-
bility for the formation of each domain is the same,
the effective slip properties of γ -TiAl lamella are ex-
pected to be essentially the same in all close-packed
directions in the (111) plane parallel to the interlamel-
lar boundaries. Since there are twice as many 〈101̄]
directions as 〈11̄0] directions in a (111) plane, and
the probability for occurrence of each domain in a γ -
TiAl lamella is expected to be the same, the effective
properties for the S1 soft-mode deformation of the γ -
TiAl lamellae are set equal to a weighted average of
those associated with 〈11̄0] (111) (weighting factor =
1/3) and 〈101̄] (111) (weighting factor = 2/3) slip
systems.

The S2 soft-mode plastic deformation of γ -TiAl
lamellae, Table I, involves slip in the close-packed di-
rections parallel to the interlamellar boundaries but on
planes inclined with respect to these boundaries. Con-
sequently, the deformation resistance for S2 slip is ex-
pected to be higher than that for S1 slip and the for-
mer is determined using the available deformation data
for polysynthetically-twinned γ -TiAl + α2-Ti3Al sin-
gle crystals.

As indicated in Table I, S2 slip involves both 〈11̄0]
and 〈101̄] slip directions which are associated with dif-
ferent deformation resistances and hardening charac-
teristics. Hence, the weighted-average approach dis-
cussed above is also applied to S2 slip. To account
for the effect of inclination of the slip planes involved
in S2 slip with respect to the lamellar interface, the
initial slip resistance for S2 slip is set to be α times
that of S1 slip where α > 1. The contribution of plas-
tic deformation in α2-Ti3Al parallel to the (111)γ ‖
(0001)α2 lamellar boundaries is not considered for the
following reasons: (a) The soft-mode plastic deforma-
tion is expected to be dominated by the softer (γ -
TiAl) phase; and (b) since the volume fraction of the
α2-Ti3Al lamellae is typically an order of magnitude
smaller than that of the γ -TiAl lamellae, the role of α2-
Ti3Al in the soft-mode deformation is expected to be
minimal.

The situation is quite different for the hard mode
of plastic deformation, i.e., for plastic deformation,
which includes a component normal to the (111)γ ‖
(0001)α2 lamellar boundaries. In this case slip is con-
trolled by the phase which exerts more resistance to-
ward this mode of plastic deformation, the α2-Ti3Al
phase. As discussed in Section 3.1, the only slip sys-
tem in α2-Ti3Al which gives rise to this type of plas-
tic deformation is the {112̄1} 〈112̄6〉-〈c + a〉 slip sys-
tem. Hence, this slip system is expected to control the
hard-mode of plastic deformation in polysynthetically-
twinned γ -TiAl + α2-Ti3Al single crystals. However,
since the volume fraction of α2-Ti3Al is typically only

Figure 10 A comparison between the experimental uniaxial-compre-
ssion stress–strain curves [26] (dashed lines) and the corresponding fit-
ting curves (solid lines) based on the current crystal-plasticity model for
two γ -TiAl + α2-Ti3Al single crystals.

one tenth of that of γ -TiAl, and γ -TiAl appears as mul-
tiple lamellae, limited hard-mode plastic deformation
in γ -TiAl is possible. This possibility is incorporated
implicitly by allowing the {112̄1} 〈112̄6〉 slip systems
in α2-Ti3Al to have a lower deformation resistance rel-
ative to the ones derived in Section 3.2. The ratio of the
two resistances is defined as β, where β < 1. Neverthe-
less, the {112̄1} 〈112̄6〉 slip system is considered as the
only slip system providing for plastic deformation in
the direction normal to the lamellar interfaces.

To summarize, the plastic deformation behavior of
γ -TiAl and α2-Ti3Al lamellae in polysynthetically-
twinned γ -TiAl + α2-Ti3Al materials is for the most
part taken to be identical to that of their single-
crystalline counterparts presented in Section 3.1.
In fact, experimental data for room-temperature
deformation behavior of polysynthetically-twinned
γ -TiAl + α2-Ti3Al single crystals are used to deter-
mine only two parameters: α which the initial defor-
mation resistance for the S2 and β which quantifies the
initial deformation resistance for {112̄1} 〈112̄6〉 slip.
These parameters are determined by fitting the uniaxial-
compression stress-strain curves of Fujiwara et al. [26]
using the aforementioned Simplex method. They are
found to be α = 1.23 and β = 0.86. A comparison of
two fitting stress-strain curves and their experimental
counterparts are shown in Fig. 10. The orientation of
the compression axis relative to the γ -TiAl phase is
indicated in Fig. 10. The crystal plasticity parameters
obtained are next used to predict room-temperature
stress-strain curves for three additional orientations
of polysynthetically-twinned γ -TiAl + α2-Ti3Al single
crystals investigated by Fujiwara et al. [26]. A com-
parison of three predicted uniaxial-compression stress-
strain curves and their experimental counterparts, along
with the orientations of the compression axis relative
to the γ -TiAl phase are shown in Fig. 11. A very good
agreement between the two sets of curves in Fig. 11
suggests that the crystal plasticity model adopted and
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Figure 11 A comparison between the experimental uniaxial-compre-
ssion stress–strain curves [26] (dashed lines) and the corresponding pre-
dicted curves (solid lines) based on the current crystal-plasticity model
for three γ -TiAl + α2-Ti3Al single crystals.

the associated parameters assessed in the present work
can capture the main features of deformation behav-
ior of polysynthetically-twinned γ -TiAl + α2-Ti3Al
single crystals, at least under the uniaxial loading
conditions.

4. Conclusions
In the present work a three-dimensional, isother-
mal, rate-dependent, viscoplastic, finite-strain, crystal-
plasticity model is adopted to simulate deformation
behavior of polysynthetically-twinned γ -TiAl + α2-
Ti3Al single crystals at room-temperature. The model
parameters are determined by fitting the available
uniaxial-compression stress-strain curves for both
γ -TiAl and α2-Ti3Al single crystals and γ -TiAl + α2-
Ti3Al polysynthetically-twinned single crystals using
a basic Simplex optimization algorithm. Based on the
results obtained the following conclusions can be made:

1. The crystal-plasticity model adopted can quite
well account for the observed deformation behav-
ior of both γ -TiAl and α2-Ti3Al single crystals
and γ -TiAl + α2-Ti3Al polysynthetically-twinned sin-
gle crystals at least under the uniaxial loading condi-
tions considered.

2. The deformation resistance for the {112̄1} 〈112̄6〉
slip systems is exceptionally high (Table V), validat-
ing that the α2-Ti3Al phase is essentially kinematically
constrained in the c-direction.

3. As expected, the deformation resistance for the
〈11̄0] ordinary-dislocation slip is lower than that for
the 〈1̄01] super-dislocation slip, Table III.

4. The homogenization procedure proposed, in
which the soft-mode deformation behavior is assumed
to be controlled by the softer (γ -TiAl) phase while
the hard–mode behavior by the hard (α2-Ti3Al) phase,
yields a reasonably good effective deformation behav-
ior of polysynthetically-twinned γ -TiAl + α2-Ti3Al
single crystals.
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Appendix A: Integration of the Material State
The single-crystalline material constitutive model dis-
cussed in Section 2.3 is implemented in a Vectorized
User Material Subroutine (VUMAT) of the commercial
finite element program ABAQUS/Explicit [11]. At the
beginning of each time increment, (time = t), for each
element and each integration point, Abaqus/Explicit
calls the VUMAT subroutine and provides it with the
following information:

(i) A list of materials parameters such as the ones
listed in Tables III or V;

(ii) The time-independent slip system parameters
(mα

0 , nα
0 ), as discussed in Sections, 2.1 and 2.2;

(iii) A list of variables: {F(t), FP(t), sα(t), T (t)};
and

(iv) A kinematic estimate of the deformation
gradient F(τ ) at the end of the time increment
(time = τ = t + �t).

Within the VUMAT, a stable, accurate and efficient
computational procedure based on an Euler forward
integration scheme is used to determine the variables
Fp(τ ), sα(τ ), and T (τ ) at the end of the time increment.
The procedure involves the following major steps:

(1) An inverse of the plastic deformation gradient,
Fp−1

(τ ), is first computed as:

Fe(t) = F(t)Fp−1

(t) (A.1)

Ee(t) = 1

2
{Fe(t)T Fe(t) − I }; T ∗(t) = C(E∗(t))

(A.2)

τα(t) = T ∗(t) · Sα
0 (A.3)

�γ α(t) = ˙̃γ

∣∣∣∣ τα(t)

Sα(t)

∣∣∣∣
1
m

�t (A.4)

Fp−1

(τ ) ∼= Fp−1

(t)

{
I −

∑
α

�γ α(t)Sα
0

}
(A.5)

(2) Next, the Cauchy stress T (τ ) at the end of the
time increment is computed as:

Fe(τ ) = F(τ )Fp−1

(τ ) (A.6)

Ee(τ ) = 1

2
{Fe(τ )T Fe(τ ) − I }; T ∗(τ ) = C(E∗(τ ))

(A.7)
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T (τ ) = det (F∗(τ ))−1 F∗(τ )T ∗(τ )F∗(τ )T (A.8)

(3) Finally, the slip resistances sα(τ ) are updated as:

hαβ(t) = qαβ

∣∣∣∣∣1 − sβ(t)

ss

∣∣∣∣∣
r

sign

{
1 − sβ(t)

ss

}
(A.9)

sα(τ ) = sα(t) +
∑

β

hαβ(t)|�γ β(t)| (A.10)

and a list of variables: {Fp(τ ), sα(τ ), T (τ )} is passed
back to Abaqus/Explicit.

Appendix B: Basic simplex method
Crystal-plasticity materials constitutive parameters
listed in Tables III and V are determined using the basic
Simplex search method [27]. The basic Simplex search
method requires that the number of initial evaluations of
the objective function (designs in the following) be one
greater than the number of design variables. The fol-
lowing objective function, which should be minimized,
is defined in the present work as:

G =
M∑

i=1

(
σ1 − σ

exp.

i

)
(B1)

where M is the number of discrete stress-strain values
used to represent the corresponding stress-strain curve
and σi and σ

exp .

i respectively represent the computed
and the experimental uniaxial-compressive stress at a
given value of the uniaxial-compressive strain. In the
case of [001]-oriented γ -TiAl single crystals, Table II,
there are 6 design variables ( ˙̃γ 0, m, r , s0, h0, and ss)
and hence the Simplex method entails that the objec-
tive function be initially evaluated for 7 sets of design
variables. In the 6-dimensional search space, the 7 ini-
tial design variables form a 7-vertex geometric figure,
which is generally referred to as the initial simplex. The
initial designs are ranked according to the magnitude
of the objective function. The design with the maxi-
mum value of the objective function is ranked as worst.
Next, the worst design is reflected through the centroid
of the remaining designs to obtain a new design. The
new design replaces the prior worst design and a new
simplex is formed. The designs within the new simplex
are ranked again and the procedure is continued. To pre-
vent the method from bouncing back and forth between
two designs in cases when the new design is the worst
design within the new simplex, the algorithm selects
the second worst design and reflects it in such cases.
The main advantage of the simplex method is that it re-
quires the evaluations of the objective function but not
of its derivatives. Furthermore, after the initial simplex
is formed, one evaluation of the objective function per
search step is needed. In addition, the algorithm is very
simple and easily coupled with a commercial finite ele-
ment program such as Abaqus/Explicit. The main lim-
itation of the simplex method is that, like many other
search algorithms, it may stall at a local minimum. To
overcome this limitation, the Simplex method must be
started with different initial simplexes and the result-
ing minima ranked. Another potential limitation of the

method is that it may require rescaling of the design
variables to make them all of the same order of magni-
tude, since all variables are subjected to the same reflec-
tion distance. Furthermore, the search progress can be
slow if the number of design variables is large. To over-
come these limitations of the basic Simplex method,
Nelder and Mead [28] introduced several modifications,
which enable expansion or contraction of the simplex
in a direction in which the optimization conditions are
favorable. This modification is practical when the num-
ber of design variables is large and when evaluation of
the objective function is not time consuming. Since in
the present work, the number of design variables is rela-
tively small and the evaluation of the objective function
involves a finite element simulation by Abaqus/Explicit
and post processing of the results, which are more time
consuming, the basic Simplex search method is used.

References
1. M. Y A M A G U C H I and Y. U M A K O S H I , Prog. Mater. Sci. 34

(1990) 1.
2. L . A . J O H N S O N , D. P . P O P E and J . O . S T I E G L E R (eds.),

in Materials Research Society Symposium Proceedings, Vol. 213,
Pittsburgh, Pennsylvania, 1991.

3. S . H . W H A N G , C . T . L I U , D . P . P O P E and J . O .
S T I E G L E R (eds.), “High-temperature Aluminides and Inter-
metallics” (The Minerals, Metals and Materials Society, Warrendale,
Pennsylvania, 1990).

4. Y . S . Y A N G and S . K . W U , Phil. Mag. 65 (1992) 15.
5. H . I N U I , M. H. O H , A. N A K A M U R A and

M. Y A M A G U C H I , Acta Metall. 40 (1992) 3095.
6. T . F U J I W A R A , A. M. N A K A M U R A , M. H O S O M I , S . R .

N I S H I T A N I , Y . S H I R A I and M. Y A M A G U C H I , Phil. Mag.
A 61 (1990) 591.

7. T . N A K A N O , A. Y O K O Y A M A and Y. U M A K O S H I , Scripta
Metall. 27 (1992) 1253.

8. B . K . K A D , M. D A O and R. J . A S A R O , Phil. Mag. A 71
(1995) 567.

9. M. D A O , B . K . K A D and R. J . A S A R O , ibid A 74 (1996) 569.
10. B . J . L E E , B . K . K A D and R. J . A S A R O , Scripta Metall. 29

(1993) 823.
11. Abaqus/Explicit 5.8 User Manual (Hibbit, Karlsson & Sorenson,

Inc., Providence, RI, 1998).
12. C . T E O D O S I U , in Proceedings of the Conference on Fundamental

Aspects of Dislocation Theory, edited by R. Simmons, J. A. DeWit
and R. Bullough (McMillan, London, 1970) p. 837.

13. R . H I L L and J . R . R I C E , Journal of the Mechanics and Physics
of Solids 20 (1972) 401.

14. J . M A N D E L , in Proceedings of the International Sympo-
sium on Foundations of Continuum Thermodynamics, edited by
D. Domingos, J. J. Nina and J. H. Whitlaw (McMillan, London,
1974) p. 283.

15. C . T E O D O S I U and F . S I D O R O F F , International Journal of
Engineering Science 14 (1976) 165.

16. R . J . A S A R O and J . R . R I C E , Journal of the Mechanics and
Physics of Solids 25 (1977) 309.

17. R . J . A S A R O , ASME Journal of Applied Mechanics 50 (1983)
921.

18. U . F . K O C K S , A . S . A R G O N and M. F . A S H B Y , Progress
in Material Science 19 (1975) 1.

19. H . J . F R O S T and M. F . A S H B Y , “Deformation Mechanism
Maps” (Pergamon Press, New York, 1982).

20. A . S . A R G O N , in “Physical Metallurgy,” edited by R. W. Cahn
and P. Haasen (Elsevier, Amsterdam, 1995).

21. M. K O T H A R I , Ph.D Thesis, MIT, June 1997.
22. T . K A W A B A T A , T . K A N A I and O. I Z U M I , Acta Metall. 33

(1985) 1355.
23. C . L . F U and M. H. Y O O , Phil. Mag. Lett. 62 (1990) 159.
24. H . I N U I , Y . T O D A and M. Y A M A G U C H I , Phil. Mag. A 67

(1993) 1315.

2862



25. M. H. Y O O , J . Z O U and C. L . F U , Mater. Sci. Eng. A192
(1995) 14.

26. T . F U J I W A R A , A. N A K A M U R A , M. H O S O M I , S . R .
N I S H I T A N I , Y . S H I K A I and M. Y A M A G U C H I , Philosophi-
cal Magazine A 61 (1990) 591.

27. W A L T E R S , P A R K E R , M O R G A N and D E M I N G , in “Sequen-
tial Simplex Optimization: A Technique for Improving Quality and

Productivity of Research, Development and Manufacturing” (CRC
Press, New York, 1991).

28. J . A . N E L D E R and R. A. M E A D , Computer Journal 7 (1965)
308.

Received 24 October 2000
and accepted 10 January 2001

2863


